Health Alert:

Starting Feb. 29, masking is optional but encouraged in UPMC medical facilities and most patient care settings.

Key Oncoprotein Found in Merkel Cell Carcinoma

University of Pittsburgh Schools of the Health Sciences Media Relations

8/15/2011

Researchers at the University of Pittsburgh Cancer Institute (UPCI) have identified the oncoprotein that allows a common and usually harmless virus to transform healthy cells into a rare but deadly skin cancer called Merkel Cell Carcinoma (MCC). Their findings, published today in the Journal of Clinical Investigation, could improve diagnosis for MCC and may help in understanding how other cancers arise.

Three years ago, Yuan Chang, M.D., and Patrick S. Moore, M.D., M.P.H., in the Cancer Virology Program at UPCI, discovered a new human cancer virus, called Merkel Cell polyomavirus (MCV), that causes most cases of MCC. But until now, it was not clear how the virus triggered cancer development.

To figure that out, lead author Masahiro Shuda, Ph.D., UPCI research associate, and the team systematically examined the viral proteins that might trigger cancer cell growth. After establishing human MCC cell lines, the scientists learned that knocking out a viral protein called “small tumor protein,” or sT, stopped the cancer cells from replicating. When they introduced sT into healthy cells in the lab, the cells took on the characteristics of cancer cells.

“This was a surprise because the viral sT proteins from other similar viruses that cause cancers in laboratory animals do not directly increase cancer activity in cells,” Dr. Shuda said. “Once we found this, we had to next understand the biological mechanisms that make MCV sT a cancer-causing protein, or oncoprotein.”

The MCV sT triggers a cellular process called “cap-dependent translation” that allows certain cellular oncoproteins to be made, Dr. Moore explained. Although the cancers caused by MCV are rare, the virus is important because it helps scientists pinpoint cell pathways that are key to more common cancers. These cancers also might activate cap-dependent translation through a DNA mutation rather than through a virus infection.

In related studies recently published by the team in Emerging Infectious Diseases, MCV was shown to normally infect four out of five healthy adults, where it remains a silent resident in skin cells without causing any symptoms. Only when specific mutations occur in the DNA of the virus―for example, by ultraviolet light exposure―does it have potential to cause cancer. The researchers are now working to identify new agents to target MCC cancer cells that may be more active and less toxic.

MCV is the first virus in the family of polyomaviruses shown to cause human cancer, but six other polyomaviruses have recently been discovered as inapparent infections of people, and scientists are actively seeking to find out if they are additional, cancer-causing viruses as well. MCV is the second human cancer virus found by the Chang-Moore laboratory, which previously also discovered the virus causing Kaposi’s sarcoma – the most common cancer among AIDS patients.

Other co-authors are Hyun Jin Kwun, Ph.D., and Huichen Fung, Ph.D., both of the Cancer Virology Program. The research was funded by the National Institutes of Health, the American Cancer Society and UPCI. Dr. Chang is an American Cancer Society Professor of pathology, and Dr. Moore is an American Cancer Society Professor of microbiology and molecular genetics, Pitt School of Medicine.

About the University of Pittsburgh Cancer Institute

As the only NCI-designated comprehensive cancer center in western Pennsylvania, the University of Pittsburgh Cancer Institute is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; bio-medical research; compassionate patient care and support; and community-based outreach services. UPCI investigators are world-renowned for their work in clinical and basic cancer research.

About the University of Pittsburgh School of Medicine

As one of the nation’s leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region’s economy. For more information about the School of Medicine, see www.medschool.pitt.edu.